

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty : Mr. Pardeep

Discipline : Mechanical Engineering

Semester :7rd

Subject : Refrigeration & Air Conditioning (ME- 403-F)
Lesson Plan Duration :15 Weeks (from Aug., 2020 to Nov., 2021)
** Work Load (Lecture) per week (in hours): Lectures-02, Practicals-01

Week	Theory		Practical	
	Lecture	Topic	Practical	Topic
	Day	(including assignment/test)	day	
1 st	1 st	Introduction: Definition of refrigeration & air conditioning; Necessity; Methods of refrigeration; Unit of refrigeration; Coefficient of	1 st	To study the vapour compression Refrigeration System and determine its C.O.P. and draw P-H
2 nd	3 rd	performance (COP)	2 nd	and T-S diagrams.
2	3.4	Fundamentals of air-conditioning system; Refrigerants Definition, Classification, Nomenclature, Desirable properties,	2	To Study the Mechanical heat pump and find its C.O.P.
	4 th	Comparative study, secondary refrigerants, Introduction to eco-friendly Refrigerants;		
3 rd	5 th	Carnot refrigeration cycle. Temperature. Limitations;	3 rd	

MERI College of Engineering and Technology (MERI - CET)

	6 th	Brayton refrigeration or the Bell Coleman air refrigeration cycle Necessity of cooling the aero plane;		To study the Air and Water heat pump and find its C.O.P.
4 th	7 th	Air craft refrigeration systems, Simple cooling and Simple evaporative types, Boot strap and Boot strap evaporative types,	4 th	To study the cut- sectional models of Reciprocating and Rotary Refrigerant compressor.
	8 th	Regenerative type and Reduced Ambient type system, Comparison of different systems, problems		
5 th	9 th	Vapour Compression (VC) Refrigeration Systems: (A) Simple Vapour Compression (VC) Refrigeration systems-Limitations of Reversed Carnot cycle with vapour as the refrigerant A systems with individual or multiple expansion valves but with and without intercoolers	5 th	To study the various controls used in Refrigerating & Air Conditioning systems.
	10 th	analysis of VC cycle considering degrees of sub cooling and superheating; VC cycle on p- v, t-s and p-h diagrams; Effects of operating conditions on COP;		
$6^{ ext{th}}$	11 th	Comparison of VC cycle with Air Refrigeration cycle Multistage Ref. Systems- Necessity of compound compression,	6 th	To study the Ice- plant, its working cycle and determine its C.O.P and capacity.
	12 th	Compound VC cycle, Intercooling with liquid sub—cooling and / or water inter cooler: Multistage compression with flash intercooling and / or water		

MERI College of Engineering and Technology (MERI - CET)

		inter-cooling systems with individual or multiple expansion valves;		
7 th	13 th	Individual compression system with individual or multiple expansion valves; Individual compression	7 th	To study the humidification, heating, cooling and dehumidification processes and plot them
	14 th	Other Refrigeration Systems: (A) Vapour Absorption Refrigeration Systems – Basic Systems, Actual COP of the System, Performance, Relative merits and demerits;		on Psychrometric charts.
8 th	15 th	Properties of aqua ammonia Electrolux Refrigeration; Problems. Steam Jet Refrigerating System- Introduction, Analysis, Relative merits and demerits, Performance Applications, Problems.	8 th	To determine the By- pass factor of Heating & Cooling coils and plot them on Psychrometric charts on different inlet conditions
	16 th	Psychrometry of Air & Air Conditioning Processes: Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation		
9 th	17 th	Relative humidity, Enthalpy, Humid specific heat, Wet bulb temp., Thermodynamics wet bulb temp., Psychrometric chart; Psychrometry of air- conditioning processes,	9 th	To determine sensible heat factor of Air on recirculated airconditioning set up.
	18 th	Mixing Process, Basic processes in conditioning of air; Psychrometric processes in air washer,		
10 th	19 th	Problems Air- Conditioning Load Calculations: Outside and inside	10 th	

MERI College of Engineering and Technology (MERI - CET)

		design conditions; Sources of	To study the chilling
		heating load; Sources	plant and its working
		of cooling load; Heat transfer	cycle .
		through structure,	
	20 th	Solar radiation Electrical	
	20	applications, Infiltration and	
		ventilation, Heat generation inside	
		conditioned space; Apparatus	
		selection;	
11 th	21 th	Comfort chart, Problems. Air	
11	21	Conditioning Systems with	
		Controls & Accessories:	
		Classifications, Layout of plants;	
		Equipment	
		selection;	
	22 nd	Air distribution system; Duct	
		systems Design; Filters;	
		Refrigerant piping;	
12 th	23 nd	Design of summer air	
12		conditioning and Winter air	
		conditioning systems	
	24 nd	Temperature sensors, Pressure	
		sensors, Humidity sensors,	
		Actuators, Safety controls;	
13 th	25 nd	Accessories; Problems.	
		Refrigeration and Air	
		Conditioning Equipment:	
	26 nd	Type of compressors and their	
		performance curve Types of	
		Condensers,	
14 th	27 nd	Heat transfer in condensers Types	
		of expansion devices;	
	28 nd	types of evaporators Cooling and	
		Dehumidifying coils, Problems	
15 th	29 nd	Problems	
	30 nd	Problems	
l-		1	1